
1

Sustainable & Productive: Improving Incentives for
Quality Software

Michael A. Heroux
Sandia National Laboratories, Albuquerque, NM, E-mail:maherou@sandia.gov

Saint John’s University, Collegeville, MN, E-mail:mheroux@csbsju.edu

Abstract—Computational Science and Engineering (CSE) soft-
ware can benefit substantially from an explicit focus on qual-
ity improvement. This is especially true as we face increased
demands in both modeling and software complexities. At the
same time, just desiring improved quality is not sufficient. We
must work with the entities that provide CSE research teams
with publication venues, funding and professional recognition in
order to increase incentives for improved software quality. In
fact, software quality is precisely calibrated to the expectations,
explicit and implicit, set by these entities. We will see broad
improvements in sustainability and productivity only when pub-
lishers, funding agencies and employers raise their expectations
for software quality.

I. INTRODUCTION

Funding agencies, publishers and employers play an essen-
tial role in determining expected behavior from the compu-
tational science and engineering (CSE) research community.
Publishers use a peer review process to ensure that published
content is accurate, complete and relevant. Funding agencies
place expectations on how research is conducted, requiring,
for example, that research teams perform work within certain
ethical norms. Employers determine promotion, rank and
tenure and other professional recognition. The value, both
implicit and explicit, that these entities place on software
quality plays a crucial role in the thousands of decisions that
CSE community members make on a daily basis regarding the
real value of software quality.

CSE software teams have strong desires to improve devel-
oper productivity and software sustainability. At the same time,
competition to publish, receive funding, satisfy project goals
and attain professional promotion and recognition means that
the amount of time and resources they can apply to improve
quality is determined by how much value they can obtain from
the investment as part of this competition. In order to increase
software quality, competitive elements must be added that are
correlated with increased quality.

Fortunately, direct evaluation of software artifacts by rank
and tenure committees, program managers and publishers is
not required. There are other metrics that, when assessed, will
provide incentive for increasing quality:

• Funding agencies: For several years, funding agen-
cies have requested the submission of data management
plans [1], [2]. More recently, a first-of-a-kind software
productivity and sustainability plan was included in a US
Department of Energy Funding Opportunity Announce-
ment. This new required element is a simple request for

information, asking proposal teams to describe how they
produce and sustain their software products.

• Publishers: Reproducibility of scientific results has be-
come a major concern for many publishers. Expectations
for reproducibility are increasing, as are the number
of journals and conference proceedings that offer ar-
tifact and results reviews. Any increased expectations
for reproducible computational results has direct impact
on the important of higher quality software processes,
documentation, source code management and more; all
of which have a strong positive impact on programmer
productivity and software sustainability when measured
over a sufficiently long time span.

• Employers: Employers can provide incentives recogniz-
ing those whose work results in high-quality software.
The exact metrics need to be adapted depending on
the situation. Metrics for industry, research labs and
universities will necessarily be distinct, and can either be
observed directly (most feasible for industry) or indirectly
(such as the acceptance of a peer-reviewed paper to a
software journal) for research labs and universities.

II. CREATING INCENTIVES FOR SUSTAINABILITY AND
PRODUCTIVITY

Expectations from CSE software clients provide a means to
give intrinsic value to virtuous behaviors that are otherwise
difficult to reward. CSE software teams certainly want to do
a good job of being productive and producing sustainable
software tools. But the drive to produce science results on a
short time scale often leads to shortcuts and lack of investment
up front that is necessary for sustainable software and long-
term productivity. Given the demands to provide a computa-
tional answer as soon as possible, especially in a competitive
environment, other activities such as careful design, efficient
implementation and thorough software testing environments
are often compromised.

The connection between these clients and sponsors (publish-
ers, funding agencies and employers) and science teams who
use computation as part of their scientific endeavors can and
must be leveraged to provide intrinsic value to other activities
that can improve sustainability and productivity.

A. Funding Agencies

Funding agencies have typically placed very high value on
scientific productivity and impact. In principle this emphasis



2

should provide strong incentive to produce high quality soft-
ware. However, often the time cycles for producing science
results are short, and the competitive drive to produce results
makes software investments that have longer time cycles out
of scope. This reality was recognized by the US National
Science Foundation and spurred its development of the SI2
program [3]. More recently the US Department of Energy
(DOE) has developed several funding opportunities that ex-
plicitly focus on software productivity and sustainability:

• The 2014 Funding Opportunity Announcement (FOA)
for Scientific Software Developer Productivity, which
resulted in the establishment of the IDEAS Project [4].
While many DOE projects use funds to improve software
quality, the work is always done as part of achieving
another goal. The IDEAS project is a first-of-a-kind
effort that enables dedicated research funding for software
methodologies as a pursuit in its own right.

• The DOE Biological and Environment Research (BER)
Office FOA on the Energy-Water-Land Nexus from
February 2016 [5], included a first-of-a-kind requirement
for proposals to contain a software productivity and
sustainability plan.

• The BER Accelerated Climate Modeling for Energy
(ACME) Software Engineering Initiative is a large project
whose express goal is to improve the quality of the
ACME source code base, train ACME scientists in more
effective software development, and introduce improve
software processes and tools into the ACME project.

B. Publishers

At first glance, the role of publishers in improving software
quality may not be apparent, but by raising expectations for in-
dependent reproducibility of computational results, publishers
provide one of the strongest incentives for CSE software teams
to invest in new and effective software quality methodologies.
Furthermore, the community incentive at the present time for
improving reproducibility is extremely high [6], [7].

Reproducibility of scientific results has become a major
concern for many publishers. Numerous highly visible arti-
cles [8], [9], [10], [11] have highlighted the poor result of
reproducibility efforts. Some community members [12], [13]
argue that openness and transparency are important ways to
provide incentives for scientists to improve reproducibility.
Such a focus also placed increased value on the quality of
software artifacts and processes. Other articles argue that
repeatability as a core value is the fundamental issue in CSE
publications [14], [15].

The ACM Transactions on Mathematical Software (TOMS)
initiated a Replicated Computational Results (RCR) re-
view process during which a dedicated reviewer is tasked
with replicating the computational results of a submitted
manuscript [16], [17], [18]. One of the first author responses
when preparing for the RCR review was a remark that the
version of software used to generate the computational results
for the paper was tagged so that it could be clearly identified
for the RCR review, as well as any time in the future.

C. Employers

Industrial employers already have a reward structure in
place that, at least indirectly and evidenced by the large
volume of industry-focused software literature and highly-
sought speakers, recognizes the value of software quality. This
is less true the closer a software business is to the scientific and
engineering domains. From the author’s experience working
with commercial scientific and engineering software compa-
nies, the majority have no explicit software lifecycle model
and seldom give recognition, except through informal means,
to developers who produce higher quality software products.
Research laboratories and university software teams place even
less emphasis on employee recognition for software quality. In
fact, there is often a negative opinion about staff members who
spend too much time working on software [14], with more
recognition going to staff who use software to do research but
spend little time producing or reviewing software products.

Development of employee incentives for quality software
can be challenging. Any reward based on direct software met-
rics can lead to skewed behavior that may actually be counter-
productive. For example, rewarding a developer for having
few defects can lead to low code generation rates for fear
of introducing a defect, avoiding challenging programming
assignemnts or similar behaviors that reduce overall productiv-
ity. Instead, employers can look to recognition from funding
agencies and publishers, and assess the overall impact of a
faculty member’s or research scientist’s software contributions,
with the same regard as for other publication and professional
activities.

III. A TIME OF DISRUPTIVE CHANGE

The CSE community is presently in an era of disruptive
changes. Similar to the time period when we transitioned
from sequential and vector computers to distributed memory
parallel computers, system architecture is changing, driven by
the stagnation of hardware clock speeds, resulting in exponen-
tial increases in available concurrency. Performance sensitive
applications must expose proportional levels of concurrency in
order to stay on the new commodity curves of threading and
vectorization scalability.

In addition, the tremendous growth in performance potential
leads to increased opportunities for multi-scale and multi-
physics coupling. Coupling demands increased collaboration
across historical separate efforts. Projects become more inter-
disciplinary, distributed (since areas of expertise are typically
not all in one group or geographic location), and larger.

All of these disruptions can be better managed and exploited
by having more deliberate efforts to improve software sustain-
ability and productivity. In fact, now is the best time to invest
in software quality. The stakes are higher than ever.

IV. TOWARD SUSTAINABLE AND PRODUCTIVE

Numerous studies have shown that activities such as code
review and test driven development [19] are universally valu-
able. Furthermore, explicit life cycle models [20], including
models for refactoring legacy codes [21], [22], are also ex-
tremely beneficial, especially for larger teams. Productivity



3

models [23], which attempt to characterize and measure the
value and cost attributes of a project, can also be extremely
helpful, especially in the face of disruptive changes in comput-
ing platforms and application requirements. There are many
valuable methodologies, tools and best practices that the CSE
community can explore, adapt, adopt and develop to improve
developer productivity and software sustainability, but other
priorities rank higher.

The CSE software community can benefit greatly from an
improved focus on sustainability and productivity, especially
at this time of increased complexity and disruptive change.
However, for many teams the incentive for investment is not
strong enough when compared to other demands.

Funding agencies can provide incentives by explicitly re-
questing software productivity and sustainability plans in pro-
posals, and by funding projects that pursue software method-
ologies research and a fundamental activity, not just as part of
pursuing another goal. Publishers can play a critical role by
increasing expectations for reproducibility, and transparency
of software processes used to generate computational results.
Employers, especially research laboratories and universities,
must start to explicitly value software contributions with the
same respect as other research output, and give recognition for
faculty and staff who receive publication and funding agency
recognition for quality sofware.

Funding agencies, publishers and employers can and must
play a key and truly unique role in improving developer
productivity and software sustainability by increasing quality
expectations. In fact, it is not too strong to say that software
quality will be calibrated precisely to the expectations of these
entities. If we want to improve software quality, we must
change expectations from funding agencies, publishers and
employers.

ACKNOWLEDGMENT

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Mar-
tin, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

The author thanks the DOE Advanced Scientific Computing
Research (ASCR) Program for IDEAS Project funding.

REFERENCES

[1] US National Science Foundation, “Data Management Guidance for CISE
Proposals and Awards,” http://www.nsf.gov/cise/cise dmp.jsp.

[2] U. S. Department of Energy Office of Science Office of Scientific
Computing Research, “Statement on Digital Data Management,” http:
//science.energy.gov/funding-opportunities/digital-data-management/.

[3] US National Science Foundation, “Software Infrastructure for Sustained
Innovation (SI2: SSE & SSI),” http://www.nsf.gov/pubs/2016/nsf16532/
nsf16532.htm.

[4] “The IDEAS Project,” http://ideas-productivity.org, 2016.
[5] U. S. Department of Energy Office of Science Office of Biological

and Environmental Research, “Regional and Global Climate Mod-
eling and Integrated Assessment Research: An Integration Frame-
work for Multi-Model, U.S. Regional Climate Evaluation that In-
corporates Local Human Influences for Research at the Energy-
Water-Land Nexus,” http://science.energy.gov/∼/media/grants/pdf/foas/
2016/SC FOA 0001531.pdf, Funding Opportunity Number: DE-FOA-
0001531.

[6] American Association for the Advancement of Science, “III
Arnold workshop: Modeling and code,” http://www.aaas.org/event/
iii-arnold-workshop-modeling-and-code.

[7] Supercomputing 2016, “Student Cluster Competition reproducibility
initiative winner,” http://sc16.supercomputing.org/studentssc/
scc-reproducibility-initiative-winner/.

[8] C. G. Begley, G. Robertson, K. Kaitin, K. Asadullah, L. Ellis, P. Sharp,
and S. Begley, “In cancer science, many discoveries don’t hold up
— Reuters,” 2014. [Online]. Available: http://www.reuters.com/article/
2012/03/28/us-science-cancer-idUSBRE82R12P20120328

[9] D. H. Bailey, “Fooling the masses: Reproducibility in high-
performance computing,” 2014. [Online]. Available: https://www.xsede.
org/documents/659353/703287/xsede14 bailey.pdf

[10] J. Arrowsmith, “Trial watch: Phase II failures: 2008–2010,” Nat Rev
Drug Discov, vol. 10, no. 5, pp. 328–329, May 2011. [Online].
Available: http://dx.doi.org/10.1038/nrd3439

[11] B. Owens, “Reliability of ’new drug target’ claims called into
question : Nature News Blog,” 2011. [Online]. Available: http:
//blogs.nature.com/news/2011/09/reliability of new drug target.html

[12] D. H. Bailey and J. M. Borwein, “Set the Default to
“Open”: Reproducible Science in the Computer Age—David H.
Bailey,” 2014. [Online]. Available: http://www.huffingtonpost.com/
david-h-bailey/set-the-default-to-open-r b 2635850.html

[13] V. Stodden, D. H. Bailey, J. Borwein, R. J. LeVeque, W. Rider,
and W. Stein, “Setting the Default to Reproducible: Reproducibility
in Computational and Experimental Mathematics,” 2013. [Online].
Available: http://icerm.brown.edu/html/programs/topical/tw12 5 rcem/
icerm report.pdf

[14] C. Collberg and T. A. Proebsting, “Repeatability in computer systems
research,” Commun. ACM, vol. 59, no. 3, pp. 62–69, Feb. 2016.
[Online]. Available: http://doi.acm.org/10.1145/2812803

[15] S. Krishnamurthi and J. Vitek, “The real software crisis: Repeatability
as a core value,” Commun. ACM, vol. 58, no. 3, pp. 34–36, Feb. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2658987

[16] M. A. Heroux, “Editorial: ACM TOMS replicated computational results
initiative,” ACM Trans. Math. Softw., vol. 41, no. 3, pp. 13:1–13:5, Jun.
2015. [Online]. Available: http://doi.acm.org/10.1145/2743015

[17] J. M. Willenbring, “Replicated computational results (RCR) report for
BLIS: A framework for rapidly instantiating BLASx functionality,” ACM
Trans. Math. Softw., vol. 41, no. 3, Sep. 2015.

[18] F. G. Van Zee and R. A. van de Geijn, “Blis: A framework for rapidly
instantiating blas functionality,” ACM Trans. Math. Softw., vol. 41, no. 3,
Sep. 2015.

[19] K. Beck, Test Driven Development. Addison Wesley, 2003.
[20] R. A. Bartlett, M. A. Heroux, and J. M. Willenbring, “Overview of

the TriBITS lifecycle model: A lean/agile software lifecycle model for
research-based computational science and engineering software,” in E-
Science (e-Science), 2012 IEEE 8th International Conference on, Oct
2012, pp. 1–8.

[21] M. Feathers, Working Effectively with Legacy Code. Addison Wesley,
2005.

[22] M. Fowler, Refactoring (Improving the Design of Existing Code).
Addison Wesley, 1999.

[23] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, Goal
Question Metric (GQM) Approach. John Wiley and Sons, Inc., 2002.


